Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells.
نویسندگان
چکیده
The pharmacological activation of the cystic fibrosis gene protein cystic fibrosis transmembrane conductance regulator (CFTR) was studied in human airway epithelial Calu-3 cells, which express a high level of CFTR protein as assessed by Western blot and in vitro phosphorylation. Immunolocalization shows that CFTR is located in the apical membrane. We performed iodide efflux, whole cell patch-clamp, and short-circuit recordings to demonstrate that the novel synthesized xanthine derivative 3, 7-dimethyl-1-isobutylxanthine (X-33) is an activator of the CFTR channel in Calu-3 cells. Whole cell current activated by X-33 or IBMX is linear, inhibited by glibenclamide and diphenylamine-2-carboxylate but not by DIDS or TS-TM calix[4]arene. Intracellular cAMP was not affected by X-33. An outwardly rectifying Cl(-) current was recorded in the absence of cAMP and X-33 stimulation, inhibited by DIDS and TS-TM calix[4]arene. With the use of short-circuit recordings, X-33 and IBMX were able to stimulate a large concentration-dependent CFTR transport that was blocked by glibenclamide but not by DIDS. Our results show that manipulating the chemical structure of xanthine derivatives offers an opportunity to identify further specific activators of CFTR in airway cells.
منابع مشابه
A(2) adenosine receptors regulate CFTR through PKA and PLA(2).
We investigated adenosine (Ado) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. A(2B) Ado receptors were identified in Calu-3, IB-3-1, COS-7, and primary human airway cells. Ado elevated cAMP in Calu-3, IB-3-1, and COS-7 cells and activated protein kinase A-dependent halide efflux in Calu-3 cells. Ado promoted arachidonic acid release from Calu...
متن کاملMost bicarbonate secretion by Calu‐3 cells is mediated by CFTR and independent of pendrin
Bicarbonate plays an important role in airway host defense, however, its transport mechanisms remain uncertain. Here we examined the relative contributions of the anion channel CFTR (cystic fibrosis transmembrane conductance regulator, ABCC7) and the anion exchanger pendrin (SLC26A4) to HCO3- secretion by the human airway cell line Calu-3. Pendrin and CFTR were both detected in parental Calu-3 ...
متن کاملExocytosis is not involved in activation of Cl- secretion via CFTR in Calu-3 airway epithelial cells.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl-channel, which mediates transepithelial Cl- transport in a variety of epithelia, including airway, intestine, pancreas, and sweat duct. In some but not all epithelial cells, cAMP stimulates Cl- secretion in part by increasing the number of CFTR Cl- channels in the apical plasma membrane. ...
متن کاملThe buffer capacity of airway epithelial secretions
The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl...
متن کاملRegulation of CFTR channels by HCO(3)--sensitive soluble adenylyl cyclase in human airway epithelial cells.
CFTR channels conduct HCO(3)(-) in addition to Cl(-) in airway epithelial cells. A defective HCO(3)(-)-transporting function of CFTR may underlie the pathogenesis of cystic fibrosis. In the present study, we have investigated whether a HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) is functionally coupled with CFTR and thus forms an autoregulatory mechanism for HCO(3)(-) transport in human ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2000